在Golang 1.14中新加入了开放编码(Open-coded)defer
类型,编译器在ssa过程中会把被延迟的方法直接插入到函数的尾部,避免了运行时的deferproc及deferprocStack
操作。
避免了在没有运行时判断下的deferreturn
调用。如有运行时判断的逻辑,则 deferreturn
也进一步优化,开放编码下的 deferreturn
不会进行jmpdefer
的尾递归调用,而直接在一个循环里遍历执行。
在1.14中defer的实现原理,共有三种defer模式类型,编译后一个函数里只会一种defer模式。
在 Golang 1.13 之前的版本中,所有 defer 都是在堆上分配 (deferProc),该机制在编译时会进行两个步骤:
在 defer 语句的位置插入 runtime.deferproc
,当被执行时,延迟调用会被保存为一个 _defer
记录,并将被延迟调用的入口地址及其参数复制保存,存入 Goroutine 的调用链表中。
在函数返回之前的位置插入 runtime.deferreturn
,当被执行时,会将延迟调用从 Goroutine 链表中取出并执行,多个延迟调用则以 jmpdefer
尾递归调用方式连续执行。
这种机制的主要性能问题存在于每个 defer 语句产生记录时的内存分配,以及记录参数和完成调用时参数移动的系统调用开销。
在Golang 1.13 版本中新加入 deferprocStack
实现了在栈上分配的形式来取代 deferproc
,相比后者,栈上分配在函数返回后 _defer
便得到释放,省去了内存分配时产生的性能开销,只需适当维护 _defer
的链表即可。
编译器可以去选择使用deferproc
还是 deferprocStack
,通常情况下都会使用deferprocStack
,性能会提升约 30%。不过在 defer 语句出现在了循环语句里,或者无法执行更高阶的编译器优化时,亦或者同一个函数中使用了过多的 defer 时,依然会使用 deferproc
。
栈上分配 (deferprocStack),基本跟堆上差不多,只是分配方式改为在栈上分配,压入的函数调用栈存有_defer
记录,另外编译器在ssa过程中会预留defer空间。
SSA 代表 static single-assignment
,是一种IR(中间表示代码),要保证每个变量只被赋值一次。这个能帮助简化编译器的优化算法。简单来说,使用ssa可以使二进制文件大小减少了30%,性能提升5%-35%等.
// buildssa builds an SSA function for fn. // worker indicates which of the backend workers is doing the processing. func buildssa(fn *Node, worker int) *ssa.Func { name := fn.funcname() printssa := name == ssaDump var astBuf *bytes.Buffer if printssa { astBuf = &bytes.Buffer{} fdumplist(astBuf, "buildssa-enter", fn.Func.Enter) fdumplist(astBuf, "buildssa-body", fn.Nbody) fdumplist(astBuf, "buildssa-exit", fn.Func.Exit) if ssaDumpStdout { fmt.Println("generating SSA for", name) fmt.Print(astBuf.String()) } } var s state s.pushLine(fn.Pos) defer s.popLine() s.hasdefer = fn.Func.HasDefer() if fn.Func.Pragma&CgoUnsafeArgs != 0 { s.cgoUnsafeArgs = true } fe := ssafn{ curfn: fn, log: printssa && ssaDumpStdout, } s.curfn = fn s.f = ssa.NewFunc(&fe) s.config = ssaConfig s.f.Type = fn.Type s.f.Config = ssaConfig s.f.Cache = &ssaCaches[worker] s.f.Cache.Reset() s.f.DebugTest = s.f.DebugHashMatch("GOSSAHASH", name) s.f.Name = name s.f.PrintOrHtmlSSA = printssa if fn.Func.Pragma&Nosplit != 0 { s.f.NoSplit = true } s.panics = map[funcLine]*ssa.Block{} s.softFloat = s.config.SoftFloat if printssa { s.f.HTMLWriter = ssa.NewHTMLWriter(ssaDumpFile, s.f.Frontend(), name, ssaDumpCFG) // TODO: generate and print a mapping from nodes to values and blocks dumpSourcesColumn(s.f.HTMLWriter, fn) s.f.HTMLWriter.WriteAST("AST", astBuf) } // Allocate starting block s.f.Entry = s.f.NewBlock(ssa.BlockPlain) // Allocate starting values s.labels = map[string]*ssaLabel{} s.labeledNodes = map[*Node]*ssaLabel{} s.fwdVars = map[*Node]*ssa.Value{} s.startmem = s.entryNewValue0(ssa.OpInitMem, types.TypeMem) s.hasOpenDefers = Debug['N'] == 0 && s.hasdefer && !s.curfn.Func.OpenCodedDeferDisallowed() switch { case s.hasOpenDefers && (Ctxt.Flag_shared || Ctxt.Flag_dynlink) && thearch.LinkArch.Name == "386": // Don't support open-coded defers for 386 ONLY when using shared // libraries, because there is extra code (added by rewriteToUseGot()) // preceding the deferreturn/ret code that is generated by gencallret() // that we don't track correctly. s.hasOpenDefers = false } if s.hasOpenDefers && s.curfn.Func.Exit.Len() > 0 { // Skip doing open defers if there is any extra exit code (likely // copying heap-allocated return values or race detection), since // we will not generate that code in the case of the extra // deferreturn/ret segment. s.hasOpenDefers = false } if s.hasOpenDefers && s.curfn.Func.numReturns*s.curfn.Func.numDefers > 15 { // Since we are generating defer calls at every exit for // open-coded defers, skip doing open-coded defers if there are // too many returns (especially if there are multiple defers). // Open-coded defers are most important for improving performance // for smaller functions (which don't have many returns). s.hasOpenDefers = false } s.sp = s.entryNewValue0(ssa.OpSP, types.Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead s.sb = s.entryNewValue0(ssa.OpSB, types.Types[TUINTPTR]) s.startBlock(s.f.Entry) s.vars[&memVar] = s.startmem if s.hasOpenDefers { // Create the deferBits variable and stack slot. deferBits is a // bitmask showing which of the open-coded defers in this function // have been activated. deferBitsTemp := tempAt(src.NoXPos, s.curfn, types.Types[TUINT8]) s.deferBitsTemp = deferBitsTemp // For this value, AuxInt is initialized to zero by default startDeferBits := s.entryNewValue0(ssa.OpConst8, types.Types[TUINT8]) s.vars[&deferBitsVar] = startDeferBits s.deferBitsAddr = s.addr(deferBitsTemp, false) s.store(types.Types[TUINT8], s.deferBitsAddr, startDeferBits) // Make sure that the deferBits stack slot is kept alive (for use // by panics) and stores to deferBits are not eliminated, even if // all checking code on deferBits in the function exit can be // eliminated, because the defer statements were all // unconditional. s.vars[&memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, deferBitsTemp, s.mem(), false) } // Generate addresses of local declarations s.decladdrs = map[*Node]*ssa.Value{} for _, n := range fn.Func.Dcl { switch n.Class() { case PPARAM, PPARAMOUT: s.decladdrs[n] = s.entryNewValue2A(ssa.OpLocalAddr, types.NewPtr(n.Type), n, s.sp, s.startmem) if n.Class() == PPARAMOUT && s.canSSA(n) { // Save ssa-able PPARAMOUT variables so we can // store them back to the stack at the end of // the function. s.returns = append(s.returns, n) } case PAUTO: // processed at each use, to prevent Addr coming // before the decl. case PAUTOHEAP: // moved to heap - already handled by frontend case PFUNC: // local function - already handled by frontend default: s.Fatalf("local variable with class %v unimplemented", n.Class()) } } // Populate SSAable arguments. for _, n := range fn.Func.Dcl { if n.Class() == PPARAM && s.canSSA(n) { v := s.newValue0A(ssa.OpArg, n.Type, n) s.vars[n] = v s.addNamedValue(n, v) // This helps with debugging information, not needed for compilation itself. } } // Convert the AST-based IR to the SSA-based IR s.stmtList(fn.Func.Enter) s.stmtList(fn.Nbody) // fallthrough to exit if s.curBlock != nil { s.pushLine(fn.Func.Endlineno) s.exit() s.popLine() } for _, b := range s.f.Blocks { if b.Pos != src.NoXPos { s.updateUnsetPredPos(b) } } s.insertPhis() // Main call to ssa package to compile function ssa.Compile(s.f) if s.hasOpenDefers { s.emitOpenDeferInfo() } return s.f }
如果在构建ssa时如发现gcflags
有N禁止优化的参数 或者 return数量 * defer数量
超过了15不适用open-coded
模式。
此外逃逸分析会判断循序的层数,如果有轮询,那么强制使用栈分配模式。
// augmentParamHole augments parameter holes as necessary for use in // go/defer statements. func (e *Escape) augmentParamHole(k EscHole, call, where *Node) EscHole { k = k.note(call, "call parameter") if where == nil { return k } // Top level defers arguments don't escape to heap, but they // do need to last until end of function. Tee with a // non-transient location to avoid arguments from being // transiently allocated. if where.Op == ODEFER && e.loopDepth == 1 { // force stack allocation of defer record, unless open-coded // defers are used (see ssa.go) where.Esc = EscNever return e.later(k) } return e.heapHole().note(where, "call parameter") }
Golang 1.14 版本继续加入了开发编码(open coded),该机制会将延迟调用直接插入函数返回之前,省去了运行时的 deferproc
或 deferprocStack
操作,在运行时的 deferreturn 也不会进行尾递归调用,而是直接在一个循环中遍历所有延迟函数执行。
这种机制使得 defer 的开销几乎可以忽略,唯一的运行时成本就是存储参与延迟调用的相关信息,不过使用这个机制还需要三个条件:
没有禁用编译器优化,即没有设置 -gcflags “-N”.
函数内 defer 的数量不超过 8 个,且返回语句与延迟语句个数的乘积不超过 15.
defer 不是在循环语句中。
此外该机制还引入了一种元素 —— 延迟比特(defer bit),用于运行时记录每个 defer 是否被执行(尤其是在条件判断分支中的 defer),从而便于判断最后的延迟调用该执行哪些函数。
延迟比特的原理:
同一个函数内每出现一个 defer 都会为其分配 1个比特,如果被执行到则设为 1,否则设为 0,当到达函数返回之前需要判断延迟调用时,则用掩码判断每个位置的比特,若为 1 则调用延迟函数,否则跳过。
为了轻量,官方将延迟比特限制为 1 个字节,即 8 个比特,这就是为什么不能超过 8 个 defer 的原因,若超过依然会选择堆栈分配,但显然大部分情况不会超过 8 个。
// The constant is known to runtime. const tmpstringbufsize = 32 const zeroValSize = 1024 // must match value of runtime/map.go:maxZero func walk(fn *Node) { Curfn = fn if Debug['W'] != 0 { s := fmt.Sprintf("\nbefore walk %v", Curfn.Func.Nname.Sym) dumplist(s, Curfn.Nbody) } lno := lineno // Final typecheck for any unused variables. for i, ln := range fn.Func.Dcl { if ln.Op == ONAME && (ln.Class() == PAUTO || ln.Class() == PAUTOHEAP) { ln = typecheck(ln, ctxExpr|ctxAssign) fn.Func.Dcl[i] = ln } } // Propagate the used flag for typeswitch variables up to the NONAME in its definition. for _, ln := range fn.Func.Dcl { if ln.Op == ONAME && (ln.Class() == PAUTO || ln.Class() == PAUTOHEAP) && ln.Name.Defn != nil && ln.Name.Defn.Op == OTYPESW && ln.Name.Used() { ln.Name.Defn.Left.Name.SetUsed(true) } } for _, ln := range fn.Func.Dcl { if ln.Op != ONAME || (ln.Class() != PAUTO && ln.Class() != PAUTOHEAP) || ln.Sym.Name[0] == '&' || ln.Name.Used() { continue } if defn := ln.Name.Defn; defn != nil && defn.Op == OTYPESW { if defn.Left.Name.Used() { continue } yyerrorl(defn.Left.Pos, "%v declared but not used", ln.Sym) defn.Left.Name.SetUsed(true) // suppress repeats } else { yyerrorl(ln.Pos, "%v declared but not used", ln.Sym) } } lineno = lno if nerrors != 0 { return } walkstmtlist(Curfn.Nbody.Slice()) if Debug['W'] != 0 { s := fmt.Sprintf("after walk %v", Curfn.Func.Nname.Sym) dumplist(s, Curfn.Nbody) } zeroResults() heapmoves() if Debug['W'] != 0 && Curfn.Func.Enter.Len() > 0 { s := fmt.Sprintf("enter %v", Curfn.Func.Nname.Sym) dumplist(s, Curfn.Func.Enter) } }
在使用open code的模式的时候,默认open coded最多支持8个defer,超过则取消。
const maxOpenDefers = 8 func walkstmt(n *Node) *Node { ... switch n.Op { case ODEFER: Curfn.Func.SetHasDefer(true) Curfn.Func.numDefers++ if Curfn.Func.numDefers > maxOpenDefers { Curfn.Func.SetOpenCodedDeferDisallowed(true) } if n.Esc != EscNever { Curfn.Func.SetOpenCodedDeferDisallowed(true) } ... }
因此 open coded
的使用条件是,最多8个defer,而且 return * defer < 15
,无循环,gcflags
无 “N” 并且取消优化。