###################################################################################
# Use a pipeline as a high-level helper
# from transformers import pipeline
# messages = [
# {"role": "user", "content": "Who are you?"},
# ]
# pipe = pipeline("text-generation", model="meta-llama/Meta-Llama-3.1-405B-Instruct")
# pipe(messages)
#########################################################################
# Load model directly
# from transformers import AutoTokenizer, AutoModelForCausalLM
# tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-405B-Instruct")
# model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3.1-405B-Instruct")
##########################################################################333
from huggingface_hub import snapshot_download
snapshot_download(repo_id="baichuan-inc/Baichuan2-7B-Chat-4bits", # 模型ID
local_dir="./models/Baichuan2-7B-Chat-4bits") # 指定本地地址保存模型
声明:本网站所提供的信息仅供参考之用,并不代表本网站赞同其观点,也不代表本网站对其真实性负责。